A-LEVEL MATHS TUTOR Pure Maths

PART ONE DIFFERENTIAL CALCULUS www.a-levelmathstutor.com

This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit.

Contents

the derivative formula	3
tangents & normals	7
maxima & minima	10
the Chain Rule	15
exponentials & logs.	18
trigonometrical functions	24
the Product Rule	28
The Quotient Rule	31
parametric equations	35
implicit equations	38
differential equations	41

The Derivative Formula

First Principles

To find an expression for the gradient of the tangent at point P on a curve, we must consider lines passing through P and cutting the curve at points $Q_1 Q_2 Q_3 Q_4 Q_5 Q_6 \dots$ etc.

As Q approaches P so the gradient of the chord PQ approaches the gradient of the tangent at P.

We can form an expression for the gradient at P by using this concept.

We know from coordinate geometry that:

gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

for points (x_1, y_1) and (x_2, y_2)

Consider the coordinates of P to be (x,y) and point Q to be (x+dx, y+dy), where dx and dy are the horizontal and vertical components of the line PQ.

Gradient of the line between points (x,y) and (x+dx, y+dy) is given by :

gradient =
$$\frac{(y+dy)-y}{(x+dx)-x} = \frac{y+dy-y}{x+dx-x} = \frac{dy}{dx}$$

The tangent to the curve = gradient of PQ when the length of PQ is zero and dx = 0 and dy = 0.

in the limit, as dx 'approaches zero' the gradient of the curve is said to be dy/dx.

If we now replace y by f(x) in the expression for gradient, since y = f(x) i.e. y is a function of x.

$$\lim_{dx\to 0} \frac{(y+dy-y)}{(x+dx-x)}$$

and

$$y = f(x)$$
$$y + dy = f(x + dx)$$

we have:

$$\lim_{dx\to 0} \frac{f(x+dx)-f(x)}{dx}$$

that is,

$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{f(x+dx) - f(x)}{dx}$$

Example: find the gradient of $y = 4x^2$

$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{f(x+dx) - f(x)}{dx}$$
$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{4(x+dx)^2 - 4(x)^2}{dx}$$
$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{4(x^2 + 2xdx + (dx)^2) - 4x^2}{dx}$$
$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{4x^2 + 8xdx + 4(dx)^2 - 4x^2}{dx}$$
$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{8xdx + 4(dx)^2}{dx}$$

cancelling by dx

$$\frac{dy}{dx} = 8x + 4dx$$

in the limit when dx = 0 this becomes,

$$\frac{dy}{dx} = 8x$$

Without doubt this is a very long winded way to work out gradients. There is a simpler way, by using the Derivation Formula(see further down the page).

Notation This is best described with an example.

If $y = 3x^2$, which can also be expressed as $f(x) = 3x^2$, then the derivative of *y* with respect to *x* can be expressed as:

$$\frac{dy}{dx} = 6x \qquad \qquad \frac{d(3x^2)}{dx} = 6x \qquad \qquad f'(x) = 6x$$

The Derivation Formula

If we have a function of the type $y = \mathbf{k} \ \mathbf{X}^n$, where \mathbf{k} is a constant, then,

$$\frac{d(\mathbf{k} x^{\mathbf{n}})}{dx} = \mathbf{k} \mathbf{n} x^{\mathbf{n}-1}$$

Example:

Find the gradient to the curve $y = 5 X^2$ at the point (2,1).

gradient = (5) (2 X^{2-1}) = 10 X^{1} = 10 X

gradient at point (2,1) is $10 \times 2 = 20$

Tangents & Normals

Tangents

The gradient of the tangent to the curve $\mathbf{y} = \mathbf{f}(\mathbf{x})$ at the point $(\mathbf{x}_1, \mathbf{y}_1)$ on the curve is given by:

the value of dy/dx, when $x = x_1$ and $y = y_1$

<u>Normals</u>

Two lines of gradients m 1, m 2 respectively are perpendicular to eachother if the product,

$m_{1} \times m_{2} = -1$

Equation of a tangent

The equation of a tangent is found using the equation for a straight line of gradient \boldsymbol{m} , passing through the point $(\boldsymbol{x}_1,\,\boldsymbol{y}_1)$

$$y - y_1 = m(x - x_1)$$

To obtain the equation we substitute in the values for $\bm{x_1}$ and $\bm{y_1}$ and \bm{m} (dy/dx) and rearrange to make y the subject.

Example

Find the equation of the tangent to the curve $y = 2x^2$ at the point (1,2).

$$y = 2x^{2}$$

therefore gradient, $\frac{dy}{dx} = 4x$
when $x = 1$ $\frac{dy}{dx} = 4$ therefore gradient is 4
using $y - y_{1} = m(x - x_{1})$ *

2

*from coordinate geometry, gradient m of the line

between two points (x, y) and (X_1, Y_1)

$$x_{1} = 1 \qquad y_{1} = 2$$

$$y - 2 = 4(x - 1)$$

$$y - 2 = 4x - 4$$

$$y = 4x - 4 + y = 4x - 2$$

Equation of a normal

The equation of a normal is found in the same way as the tangent. The gradient(m_2) of the normal is calculated from;

 $m_1 x m_2 = -1$ (where m_1 is the gradient of the tangent)

SO

$$m_2 = -1/(m_1)$$

Example

Find the equation of the normal to the curve:

 $y = x^2 + 4x + 3$, at the point (-1,0).

 $y = x^2 + 4x + 3$ therefore gradient(m₁), $\frac{dy}{dx} = 2x + 4$ at the point (-1,0) $m_1 = 2x + 4 = -2 + 4 = 2$

let the gradient of the normal be m_2 product of tangent and normal gradient:

$$m_1.m_2 = -1$$

$$\therefore 2.m_2 = -1 \qquad m_2 = -\frac{1}{2}$$

using
$$y - y_1 = m_2(x - x_1)$$

when $x_1 = -1$, $y_1 = 0$
 $y - 0 = -\frac{1}{2}(x - (-1))$
 $y = -\frac{1}{2}x - \frac{1}{2}$
mult. by 2 $2y = -x - 1$
 $\frac{2y + x + 1 = 0}{2}$

Maxima & Minima

Gradient change

Starting to the **left** of a **maximum** the gradient changes from '+ ' to ' - 'with increasing 'x'.

Starting to the **left** of a **minimum**, the gradient changes from '-' to ' + 'with increasing 'x'.

At the point of maximum or minimum the gradient is zero.

11

Example

Show that the curve $y = x^2$ has a minimum at (0,0).

$$y = x^{2}$$
gradient, $\frac{dy}{dx} = 2x$
at the point (0,0) $x = 0$
gradient, $\frac{dy}{dx} = 2x = 0$
 \therefore there is either a maximum or minimum at (0,0)
taking a value of x less than 0, say -1
gradient, $\frac{dy}{dx} = 2x = -2$ (a negative gradient)
taking a value of x more than 0, say +1
 $t = \frac{dy}{dx} = 2x = -2$ (by the constant of x more than 0, say +1)

gradient, $\frac{dy}{dx} = 2x = 2$ (a positive gradient) The gradient changes from negative to positive with increasing x,

 \therefore the function has a minimum at (0,0)

Locating the point of maximum or minimum

The x-value at a maximum or minimum is found by differentiating the function and putting it equal to zero.

The y-value is then found by substituting the 'x' into the original equation.

<u>Example</u>

Find the coordinates of the greatest or least value of the function:

$$y = x^{2} + 3x + 2$$

gradient, $\frac{dy}{dx} = 2x + 3$
max. or min. when gradient is zero
 $0 = 2x + 3$
 $x = -\frac{3}{2} = -\frac{1.5}{2}$
substituting this value of x into $y = x^{2} + 3x + 2$
 $y = \left(-\frac{3}{2}\right)^{2} + 3\left(-\frac{3}{2}\right) + 2$
 $y = \left(\frac{9}{4}\right) - \left(\frac{9}{2}\right) + 2$

$$= 2.25 - 4.5 + 2 = -0.25$$

coords. of the maximum/minimum are (-1.5,-0.25)

Curve Sketching

The power of 'x' gives a hint to the general shape of a curve.

Together with the point of maximum or minimum, where the curve crosses the axes at y=0 and x=0 gives further points.

Example

Sketch the curve $y = x^2 + 3x + 2$ from the example above, given that there is a minimum at (-1.5,-0.25).

factorising and putting y=0 to find where the curve crosses the x-axis,

$$(x+1)(x+2)=0$$

x=-1 and x=-2

so the curve crosses the x-axis at (-1,0) and (-2,0)

putting x=0 to find where the curve crosses the y-axis

y=2

so the curve crosses the y-axis at (0,2)

The Chain Rule

The Chain Rule Equation

This is a way of differentiating a function of a function.

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

Example #1

differentiate
$$(3x + 3)^3$$

let $y = (3x + 3)^3$ and $t = 3x + 3$
then $y = t^3$
 $\frac{dt}{dx} = 3$, $\frac{dy}{dt} = 3t^2$
using the Chain Rule
 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$, $\therefore \frac{dy}{dx} = 3t^2 \cdot 3 = 9t^2$
 $\frac{d\{(3x + 3)^3\}}{dx} = 9(3x + 3)^2 = 9(3)(x + 1)(3)(x + 1)$
 $= 81(x + 1)^2$

Example #2

differentiate
$$(x^2 + 5x)^6$$

let $y = (x^2 + 5x)^6$ and $t = x^2 + 5x$
then $y = t^6$
 $\frac{dt}{dx} = 2x + 5$, $\frac{dy}{dt} = 6t^5$
using the Chain Rule
 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$, $\frac{dy}{dx} = 6t^5 \cdot 2x + 5$
 $\frac{d\{(x^2 + 5x)^6\}}{dx} = 6(x^2 + 5x)^5 (2x + 5)$
 $= 6(2x + 5)(x^2 + 5x)^5$

Rates of change

The Chain Rule is a means of connecting the rates of change of dependent variables.

Example #1

If air is blown into a spherical balloon at the rate of 10 cm³ how quickly will the radius grow?

if the radius of the balloon is r

then the volume
$$V = \frac{4}{3}\pi r^3$$

and $\frac{dV}{dr} = 4\pi r^2$

the rate of change of volume with time

is given by:
$$\frac{dV}{dt} = 10 \text{ cm}^3 / \text{sec.}$$

using the Chain Rule $\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} \text{ and } \frac{dV}{dr} = 4\pi r^2$ $\therefore \frac{dr}{dt} = \frac{dV}{dt} \cdot \frac{1}{\frac{dV}{dr}} = \frac{dV}{dt} \cdot \frac{dr}{dV} = 10 \cdot \frac{1}{4\pi r^2}$ $= \frac{5}{2\pi r^2}$ i.e. rate of change of radius is $\frac{5}{2\pi r^2}$ cm/sec.

A spherical raindrop is formed by condensation. In an interval of 10 sec. its volume increases at a constant rate from 0.010 mm³ to 0.500 mm³.

Find the rate at which the surface area of the raindrop is increasing, when its radius is 1.0mm

radius*r* mm

volume V is given by:
$$V = \frac{4}{3}\pi r^{2}$$

$$\therefore \qquad \frac{dV}{dr} = \frac{4\pi}{3} \cdot 3r^{2} = 4\pi r^{2}$$

also, area A is given by: $A = 4\pi r^2$

$$\therefore \qquad \frac{dA}{dr} = 4\pi \cdot 2r = 8\pi r$$

vol. increases at a constant rate by.

$$0.5 - 0.010 = 0.490 \text{ mm}^3 \text{ in } 10 \text{ sec.}$$

so
$$\frac{dV}{dt} = \frac{0.49}{10} = 0.049 \text{ mm}^3 \text{ s}^{-1}$$
.

we are required to find $\frac{dA}{dt}$ when r = 1.0mm using the Chain Rule, $\frac{dA}{dt} = \left(\frac{dA}{dV}\right) \cdot \frac{dV}{dt}$ $= \left(\frac{dA}{dr} \cdot \frac{dr}{dV}\right) \cdot \frac{dV}{dt}$ $\frac{dA}{dt} = \left(8\pi r \cdot \frac{1}{4\pi r^2}\right) 0.049 = \left(\frac{2 \times 0.049}{r}\right) = \frac{0.098}{r}$

when r = 1.0 mm, $\frac{dA}{dt} = \frac{0.098}{1} = 0.098$ mm².s⁻¹. \therefore surface area, for a radius of 1mm, increases by 0.098 mm².s⁻¹.

Exponentials & Logarithms

Exponential functions

Strictly speaking **all** functions where the variable is in the index are called exponentials.

The Exponential function e^x

This is the **one** particular exponential function where 'e' is approximately 2.71828 and the gradient of $y = e^x$ at (0,1) is 1.

One other special quality of $y = e^x$ is that its derivative is also equal to e^x

$$\frac{d(e^x)}{dx} = e^x$$

and for problems of the type $y = e^{kx}$

$$t = kx \qquad \frac{dt}{dx} = k$$
$$y = e^{t} \qquad \frac{dy}{dt} = e^{t} = e^{kx}$$
$$\frac{d(e^{kx})}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = e^{kx} \cdot k$$
$$\frac{dy}{dx} = ke^{kx}$$

Derivative problems like the above concerning 'e' are commonly solved using the Chain Rule.

Example #1

Find the derivative of:

$$y = e^{2x^{3}}$$

let $t = 2x^{3}$, $y = e^{t}$
 $\frac{dx}{dt} = 6x^{2}$ $\frac{dy}{dt} = e^{t}$
 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dx}{dt} = e^{t} \cdot 6x^{2}$
 $\frac{dy}{dx} = e^{2x^{3}} 6x^{2}$

find the derivative of:

$$y = e^{(3x-4)^{2}}$$

let $t = (3x-4)^{2}$ $y = e^{t}$
 $\frac{dt}{dx} = 2(3x-4).3$, $\frac{dy}{dt} = e^{t}$
 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = e^{t} \cdot 6(3x-4)$
 $\frac{dy}{dx} = \frac{6(3x-4)e^{(3x-4)^{2}}}{4x}$

Derivative of a Natural Logarithm function

Remember **y=log**_e**x** means:

x is the number produced when **e** is raised to the power of **y**

The connection between $y=e^x$ and $y=log_ex$ can be shown by rearranging $y=log_ex$.

 $y = log_e x$ can be written as $x = e^y$

(log_ex is now more commonly written as ln(x))

The derivative of ln(x) is given by:

Example #1

find the derivative of y = ln(3x)

$$y = \ln(3x)$$
$$= \ln(3) + \ln(x)$$
$$\frac{dy}{dx} = 0 + \frac{1}{x}$$
$$\frac{dy}{dx} = \frac{1}{x}$$

find the derivative of $y = \ln(x^3+3)$

$$y = \ln(x^{2} + 3)$$

let $t = x^{2} + 3$, then $y = \ln(t)$
 $\frac{dt}{dx} = 2x$, $\frac{dy}{dt} = \frac{1}{t}$
 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{1}{t} \cdot 2x = \frac{1}{x^{2} + 3} \cdot 2x$
 $\frac{dy}{dx} = \frac{2x}{x^{2} + 3}$

<u>Problems of the type $y=N^{f(x)}$ </u>

Problems of this type are solved by taking logs on both sides and/or using the Chain Rule.

Example #1

find the derivative of $y=10^x$

$$y = 10^{x}$$

$$\ln(y) = \ln(10^{x})$$

$$\ln(y) = x \ln(10)$$

$$\frac{d(\ln(y))}{dx} = \frac{d(x \ln(10))}{dx}$$

$$\frac{d(\ln(y))}{dy} \cdot \frac{dy}{dx} = 1.\ln(10)$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \ln(10)$$

$$\frac{dy}{dx} = y \ln(10) = \underline{10^{x} \ln(10)}$$

find the derivative of $y = ln(cos^3 2x)$

$$y = \ln(\cos^{3} 2x)$$

$$t = \cos(2x) \qquad y = \ln(t^{3})$$

$$\frac{dt}{dx} = -2\sin(2x) \qquad \frac{dy}{dt} = \frac{1}{t^{3}} \cdot 3t^{2} = \frac{3}{t}$$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{3}{t} \cdot (-2\sin(2x))$$

$$= \frac{3}{\cos(2x)} \cdot (-2\sin(2x))$$

$$= -6\tan(2x)$$

A graphical comparison of exponential and log functions

As you can see, $y = e^x$ is reflected in the line y=x to produce the curve y=ln(x)

Derivation of Trigonmetrical Functions

Relation between derived trigonometrical functions

$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$
$$\sec x = \frac{1}{\cos x} \qquad \csc x = \frac{1}{\sin x}$$

Derivative of the Sine Function

Example differentiate sin(2x+4)

let
$$y = \sin(2x+4)$$
 and $t = 2x+4$
 $\therefore y = \sin(t)$
 $\frac{dy}{dt} = \cos(t)$ $\frac{dt}{dx} = 2$
 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \cos(t) \cdot 2$
 $= 2\cos(2x+4)$

25

$$\frac{d(\cos x)}{dx} = -\sin x$$

Example differentiate cos³x

let
$$y = \cos^3 x$$
 and $t = \cos x$
 $\therefore y = t^3$
 $\frac{dy}{dt} = 3t^2$ $\frac{dt}{dx} = -\sin x$
 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 3t^2 \cdot (-\sin x)$
 $= -3\cos^2 x \sin x$
 $= -\frac{3}{2}\cos x (2\cos x \sin x)$
but $\sin 2\theta = 2\cos \theta \sin \theta$
 $\therefore \frac{dy}{dx} = -\frac{3}{2}\cos x \sin 2x$

Derivative of the Tangent Function

$$\frac{d(\tan x)}{dx} = \frac{d\left(\frac{\sin x}{\cos x}\right)}{dx}$$
using the Product Rule
$$y = \frac{u}{v} \qquad u = \sin x \quad v = \cos x$$

$$\frac{du}{dx} = \cos x \qquad \frac{dv}{dx} = -\sin x$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$= \frac{(\cos x) \cdot (\cos x) - (\sin x) \cdot (-\sin x)}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

$$\frac{d(\tan x)}{dx} = \sec^2 x$$

Derivative of the Cosecant Function

dx

$$\frac{d(\csc x)}{dx} = \frac{d\left(\frac{1}{\sin x}\right)}{dx} = \frac{d(\sin x)^{-1}}{dx}$$
let $y = (\sin x)^{-1}$, $t = \sin x$
then $y = t^{-1}$

$$\frac{dy}{dt} = (-1)(t^{-2}) \qquad \frac{dt}{dx} = \cos x$$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -t^{-2} \cdot \cos x = -(\sin x)^{-2} \cdot \cos x$$

$$\frac{dy}{dx} = -\frac{\cos x}{\sin^2 x} = -\frac{\cos x}{\sin x \cdot \sin x} = -\frac{\cos x}{\sin x} \cdot \frac{1}{\sin x}$$

$$\frac{d(\csc x)}{dx} = -\cot x \cdot \csc x$$

Derivative of the Secant Function

$$\frac{d(\sec x)}{dx} = \frac{d\left(\frac{1}{\cos x}\right)}{dx} = \frac{d(\cos x)^{-1}}{dx}$$
let $y = (\cos x)^{-1}$, $t = \cos x$
then $y = t^{-1}$

$$\frac{dy}{dt} = (-1)(t^{-2}) \qquad \frac{dt}{dx} = -\sin x$$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -t^{-2} \cdot (-\sin x) = (\cos x)^{-2} \cdot \sin x$$

$$\frac{dy}{dx} = \frac{\sin x}{\cos^2 x} = \frac{\sin x}{\cos x \cdot \cos x} = \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}$$

$$\frac{d(\sec x)}{dx} = \tan x \cdot \sec x$$

Derivative of the Cotangent Function

$$\frac{d(\cot x)}{dx} = \frac{d\left(\frac{\cos x}{\sin x}\right)}{dx}$$
using the Product Rule

$$y = \frac{u}{v} \qquad u = \cos x \quad v = \sin x$$

$$\frac{du}{dx} = -\sin x \qquad \frac{dv}{dx} = \cos x$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$= \frac{(\sin x) \cdot (-\sin x) - (\cos x) \cdot (\cos x)}{\sin^2 x}$$

$$= \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = \frac{-1(\sin^2 x + \cos^2 x)}{\sin^2 x}$$

$$= -\frac{1}{\sin^2 x} = -\csc^2 x$$

$$\frac{d(\cot x)}{dx} = -\csc^2 x$$

The Product Rule

The Product Rule Equation

Gottfried Leibniz is credited with the discovery of this rule which he called **Leibniz's Law**.

Simply, if **u** and **v** are two differentiable functions of *x*, then the differential of uv is given by:

$$y = uv$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

this can also be written, using 'prime notation' as :

$$(u.v)' = u.v' + vu'$$

differentiate
$$(x^2 + 1)^3 (x^3 + 1)^2$$

 $u = (x^2 + 1)^3$ $v = (x^3 + 1)^2$
 $y = u.v$

$$\frac{du}{dx} = 3(x^2 + 1)^2.2x$$
 $\frac{dv}{dx} = 2(x^3 + 1).3x^2$
 $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

$$\frac{dy}{dx} = (x^2 + 1)^3.2(x^3 + 1).3x^2 + (x^3 + 1)^2.3(x^2 + 1)^2.2x$$

 $= 6x^2 (x^2 + 1)^3.(x^3 + 1) + 6x(x^2 + 1)^2 (x^3 + 1)^2$
 $= 6x(x^2 + 1)^2 (x^3 + 1) \left(x(x^2 + 1) + (x^3 + 1)\right)$
 $= 6x(x^2 + 1)^2 (x^3 + 1) \left(x^3 + x + x^3 + 1\right)$
 $= \frac{6x(x^2 + 1)^2 (x^3 + 1)(2x^3 + x + 1)}{2x^3 + 1}$

Example #2

differentiate
$$y = (x^2 - 4)(x + 3)^2$$

 $u = (x^2 - 4)$ $v = (x + 3)^2$
 $y = u.v$
 $\frac{du}{dx} = 2x$ $\frac{dv}{dx} = 2(x + 3)$
using $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
 $\frac{dy}{dx} = (x^2 - 4).2(x + 3) + (x + 3)^2.2x$
 $= 2(x + 3)(x^2 - 4) + 2x(x + 3)^2$
 $= 2(x + 3)(x^2 - 4 + x^2 + 3x)$
 $= 2(x + 3)(2x^2 + 3x - 4)$

differentiate
$$y = (x^2 + 3)\sqrt{(2 + x)}$$

 $u = (x^2 + 3)$ $v = (2 + x)^{\frac{1}{2}}$
 $y = u.v$
 $\frac{du}{dx} = 2x$ $\frac{dv}{dx} = \frac{1}{2}(2 + x)^{-\frac{1}{2}}$
using $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
 $\frac{dy}{dx} = (x^2 + 3) \cdot \frac{1}{2}(2 + x)^{-\frac{1}{2}} + (2 + x)^{\frac{1}{2}} \cdot 2x$
 $= \frac{(x^2 + 3)}{2(2 + x)^{\frac{1}{2}}} + \frac{2x(2 + x)^{\frac{1}{2}}}{1}$
 $= \frac{(x^2 + 3) + 2(2 + x)^{\frac{1}{2}} \cdot 2x(2 + x)^{\frac{1}{2}}}{2(2 + x)^{\frac{1}{2}}}$
 $= \frac{(x^2 + 3) + 4x(2 + x)}{2(2 + x)^{\frac{1}{2}}}$
 $= \frac{(x^2 + 3) + 8x + 4x^2}{2(2 + x)^{\frac{1}{2}}}$
 $= \frac{(x^2 + 3) + 8x + 4x^2}{2(2 + x)^{\frac{1}{2}}}$
 $= \frac{5x^2 + 8x + 3}{2(2 + x)^{\frac{1}{2}}}$

The Quotient Rule

The Quotient Rule Equation

This is a variation on the Product Rule(Leibniz's Law) from the previous topic.

As with the Product Rule, , if **u** and **v** are two differentiable functions of *x*, then the differential of u/v is given by:

$$y = \frac{u}{v}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

this can also be written, using 'prime notation' as :

$$\left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}$$

differentiate
$$\frac{(x-3)^2}{(x+2)^2}$$

 $u = (x-3)^2$ $v = (x+2)^2$
 $y = \frac{u}{v}$
 $\frac{du}{dx} = 2(x-3)$ $\frac{dv}{dx} = 2(x+2)$
 $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
 $\frac{dy}{dx} = \frac{(x+2)^2 \cdot 2(x-3) - (x-3)^2 \cdot 2(x+2)}{(x+2)^4}$
 $= \frac{(x+2)^2 \cdot 2(x-3) - (x-3)^2 \cdot 2(x+2)}{(x+2)^4}$
 $= \frac{2(x+2)(x-3)((x+2) - (x-3))}{(x+2)^4}$
 $= \frac{2(x-3)(x+2-x+3)}{(x+2)^3}$
 $= \frac{2(x-3)(5)}{(x+2)^3}$

differentiate
$$\frac{x}{\sqrt{(1+x^2)}}$$

 $u = x$ $v = (1+x^2)^{\frac{1}{2}}$
 $y = \frac{u}{v}$
 $\frac{du}{dx} = 1$ $\frac{dv}{dx} = \frac{1}{2} \cdot 2x(1+x^2)^{-\frac{1}{2}}$
 $= x(1+x^2)^{-\frac{1}{2}}$
 $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
 $= \frac{(1+x^2)^{\frac{1}{2}} \cdot 1 - x \cdot x(1+x^2)^{-\frac{1}{2}}}{(1+x^2)}$
 $= \frac{(1+x^2)^{\frac{1}{2}} - x^2(1+x^2)^{-\frac{1}{2}}}{(1+x^2)}$

mult. top & bottom by $(1 + x^2)^{\frac{1}{2}}$

$$=\frac{(1+x^2)-x^2}{(1+x^2)^{\frac{3}{2}}}$$
$$\frac{dy}{dx}=\frac{1}{(1+x^2)^{\frac{3}{2}}}$$

differentiate
$$\frac{1-x^2}{1+x^2}$$

 $u = 1-x^2$ $v = 1+x^2$
 $y = \frac{u}{v}$
 $\frac{du}{dx} = -2x$ $\frac{dv}{dx} = 2x$
 $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
 $= \frac{(1+x^2).(-2x) - (1-x^2).2x}{(1+x^2)^2}$
 $= \frac{-(2x+2x^3) - (2x-2x^3)}{(1+x^2)^2}$
 $= \frac{-2x-2x^3 - 2x + 2x^3}{(1+x^2)^2}$
 $\frac{dy}{dx} = -\frac{4x}{(1+x^2)^2}$

Parametric Equations

Parametric Equations

Both x and y are given as functions of another variable - called a **parameter** (eg 't'). Thus a pair of equations, called **parametric** equations, completely describe a single x-y function.

The d ifferentiation of functions given in parametric form is carried out using the Chain Rule.

Example #1

find
$$\frac{dy}{dx}$$
 when $x = t^2$, $y = 2t$
 $x = t^2$, $y = 2t$
 $\frac{dx}{dt} = 2t$, $\frac{dy}{dt} = 2$
 $\frac{dy}{dx} = \frac{dy}{dt}$, $\frac{dt}{dx} = 2$, $\frac{1}{2t}$
 $\frac{dy}{dx} = \frac{1}{t}$

given that $x = 3\cos\theta - \cos 3\theta$, $y = 3\sin\theta - \sin 3\theta$ show that $\frac{dy}{dx} = \tan 2\theta$ $x = 3\cos\theta - \cos 3\theta$ $y = 3\sin\theta - \sin 3\theta$ $\frac{dx}{d\theta} = -3\sin\theta + 3\sin 3\theta$, $\frac{dy}{d\theta} = 3\cos\theta - 3\cos 3\theta$ $\frac{dy}{dx} = \frac{dy}{d\theta}$, $\frac{dx}{d\theta} = 3\cos\theta - 3\cos 3\theta$, $\frac{1}{-3\sin\theta + 3\sin 3\theta}$ $\frac{dy}{dx} = \frac{3\cos\theta - 3\cos 3\theta}{3\sin 3\theta - 3\sin\theta} = \frac{\cos\theta - \cos 3\theta}{\sin 3\theta - \sin\theta}$ but $\cos(A + B) - \cos(A - B) = -2\sin A\sin B$ $\therefore \cos(2\theta + \theta) - \cos(2\theta - \theta) = -2\sin 2\theta \sin\theta$ $\Rightarrow \cos(3\theta) - \cos(3\theta) = 2\sin 2\theta \sin\theta$ $\Rightarrow \cos(\theta) - \cos(3\theta) = 2\sin 2\theta \sin\theta$ $\Rightarrow \sin(3\theta) - \sin(\theta) = 2\cos 8\theta \sin\theta$ $= \tan 2\theta$

if
$$x = t^3 - t^2$$
 and $y = t^2 - t$,
find $\frac{dy}{dx}$ in terms of t
 $x = t^3 - t^2$ \therefore $\frac{dx}{dt} = 3t^2 - 2t$
 $y = t^2 - t$ \therefore $\frac{dy}{dt} = 2t - 1$
 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$
 $= 2t - 1 \cdot \frac{1}{3t^2 - 2}$
 $= \frac{2t - 1}{\frac{t(3t - 2)}{3t^2 - 2}}$

Implicit Equations

Explicit equations

Explicit equations are the type we are most familiar with eq y=f(x), $y = 2x^2 + 3x - 5$ etc. where y is expressed in terms of x or some other variable.

Implicit equations

Implicit equations have the structure of being a mix of x and y terms eg $2x^2 + 3xy - 3y^2 =$ 5, so y cannot be expressed in terms of x.

The method for solving equations of this type is to regard the whole expression as a function of x and to differentiate both sides of the equation. Any power of y is treated as a 'function of a function', as y is a function of x.

Example #1

find
$$\frac{dy}{dx}$$
 for the implicit function:
 $x^3 + 3y^4 - y^2 - 2x = 0$

$$\frac{d(x^3)}{dx} + \frac{d(3y^4)}{dx} - \frac{d(y^2)}{dx} - \frac{d(2x)}{dx} = 0$$
$$3x^2 + 12y^3\frac{dy}{dx} - 2y\frac{dy}{dx} - 2 = 0$$
$$\frac{dy}{dx}(12y^3 - 2y) = 2 - 3x^2$$

$$\frac{dy}{dx} = \frac{2 - 3x^2}{12y^3 - 2y}$$

38

find
$$\frac{dy}{dx}$$
 for the implicit function:

$$\ln(y) = y \ln(x)$$
for $x > 0$ and $y > 0$

$$\frac{\ln(y) = y \ln(x)}{dx} = \frac{d(y \ln(x))}{dx} \qquad (i$$
for the expression $\frac{d(y \ln(x))}{dx}$
let $u = y$ and $v = \ln(x)$

$$\frac{du}{dy} = \frac{du}{dx} \cdot \frac{dy}{du} = \frac{dy}{dx} \qquad \frac{dv}{dx} = \frac{1}{x}$$

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
substituting into $(i \text{ for } \frac{d(y \ln(x))}{dx})$

$$\frac{1}{y} \frac{dy}{dx} = y \cdot \frac{1}{x} + \ln(x) \frac{dy}{dx}$$
rearranging
$$\frac{1}{y} \frac{dy}{dx} - \ln(x) \frac{dy}{dx} = \frac{y^2}{x}$$
multiplying each side by y

$$\frac{dy}{dx} - y \ln(x) \frac{dy}{dx} = \frac{y^2}{x}$$

$$\frac{dy}{dx} = \frac{y^2}{x(1-y \ln(x))}$$

find the gradient of the curve:

$$x^{2} + 2xy - 2y^{2} + x = 2$$
 at the point (-4,1)

$$\frac{d(x^2)}{dx} + \frac{d(2xy)}{dx} - \frac{d(2y^2)}{dx} + \frac{d(x)}{dx} = 2$$

$$2x + (2.y + 2x.\frac{dy}{dx}) - 4y.\frac{dy}{dx} + 1 = 0$$

$$\therefore \frac{dy}{dx}(2x - 4y) = -1 - 2x - 2y$$

$$\frac{dy}{dx} = \frac{-1 - 2x - 2y}{2x - 4y}$$

when $x = -4$ and $y = 1$

$$\frac{dy}{dx} = \frac{-1 - 2(-4) - 2(1)}{2(-4) - 4(1)} = \frac{-1 + 8 - 2}{-8 - 4}$$

$$= \frac{5}{-12} = -\frac{5}{12}$$

gradient at (-4, 1) is $-\frac{5}{12}$

Differential Equations

Definition

An equation containing any **differential coefficients** is called a differential equation.

differential coefficients:
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$...

The solution of a differential equation is an equation relating x and y and containing **no** differential coefficients.

General & Particular Solution

The **General Solution** includes some unknown constant in the solution of a differential equation.

When some data is given, say the coordinates of a point, then a **Particular Solution** can be formed.

example

differential equation: $\frac{dy}{dx} = 4$ general solution: y = 4x + c(where c is an unknown constant)

if we are given that x = 3 when y = 5then 5=12+c, so c = -7particular solution: y = 4x - 7

find
$$\frac{d^3 y}{dx^3}$$
 when $y = \frac{3}{x}$
 $y = \frac{3}{x} = 3x^{-1}$
 $\therefore \frac{dy}{dx} = 3(-1)x^{-2} = -\frac{3}{x^2}$
 $\therefore \frac{d^2 y}{dx^2} = -3(-2)x^{-3} = \frac{6}{x^3}$
 $\therefore \frac{d^3 y}{dx^3} = 6(-3)x^{-4} = -\frac{18}{x^4}$

Example #2

given that $y = Ax^2 + B\ln x + C$ show that $\frac{d^2y}{dx^2} = \frac{1}{x} \cdot \frac{dy}{dx}$ $y = Ax^2 + B\ln x + C$ $\frac{dy}{dx} = 2Ax + \frac{B}{x}$ $\frac{d^2y}{dx^2} = 2A - \frac{B}{x^2}$ $= \frac{1}{x} \left(2Ax - \frac{B}{x} \right)$ $\frac{d^2y}{dx^2} = \frac{1}{x} \cdot \frac{dy}{dx}$

Points of Inflection(Inflexion)

The value of the second derivative can give an indication whether at a point a function has a maximum, minimum or an inflection. These are all called **stationary points**.

$$\frac{d^2 y}{dx^2} < 0 \implies \text{maximum(-ve)}$$
$$\frac{d^2 y}{dx^2} > 0 \implies \text{minimum(+ve)}$$
$$\frac{d^2 y}{dx^2} = 0 \implies \text{inflection(zero)}$$

A point of inflection has a zero gradient, but the point is not a maximum or a minimum value.

It is where the gradient of a curve decreases(or increases)to zero before increasing(or decreasing)again, but not changing from a negative to a positive value or vice versa.

<u>Example</u>

Find the stationary points of the function:

$$y = 3x^4 - 4x^3 - 12x^2 + 5$$

$$y = 3x^{4} - 4x^{3} - 12x^{2} + 5$$

$$\frac{dy}{dx} = 12x^{3} - 12x^{2} - 24x$$

$$= 12x(x^{2} - x - 2)$$

$$= 12x(x + 1)(x - 2)$$

 $\therefore x \text{ has roots } 0, -1, 2$

$$\frac{d^{2}y}{dx^{2}} = 36x^{2} - 24x - 24 = 12(3x^{2} - 2x - 2)$$

when $x = 0$ $\frac{d^{2}y}{dx^{2}} = -24 < 0$ $\therefore \max(0, 10)$
when $x = -1$ $\frac{d^{2}y}{dx^{2}} = 36 > 0$ $\therefore \min(-1, 5)$
when $x = 2$ $\frac{d^{2}y}{dx^{2}} = 72 > 0$ $\therefore \min(2, 22)$

<u>Notes</u>

This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit.