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The Derivative Formula

First Principles

TANGENT

To find an expression for the gradient of the tangent at point P on a curve, we must
consider lines passing through P and cutting the curve at points Q; Q. Qz Q4 Qs Qg ...etc.

As Q approaches P so the gradient of the chord PQ approaches the gradient of the tangent
at P.

We can form an expression for the gradient at P by using this concept.

LY

We know from coordinate geometry that:

gradient = 22_21

X
for points (x,.y,) and (x,.,)
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Consider the coordinates of P to be (X,y) and point Q to be (x+dx, y+dy), where dx and dy
are the horizontal and vertical components of the line PQ.

Q(x+dx,y+dy)

dy

F

Gradient of the line between points (X,y) and (x+dx, y+dy) is given by :

oy _ @) -y yrdy-y dy
oedisnt _{x+dx]—:c_x+cix—x o

The tangent to the curve = gradient of PQ when the length of PQ is zero and dXx = 0
and dy = 0.

in the limit, as dXx 'approaches zero' the gradient of the curve is said to be dy/dx.

If we now replace y by f(x) in the expression for gradient, since y = f(X) i.e.y is a function
of X.

P +dp-y)

lim Mo x wa
dr—s (xtdr—x})

and
y =1
y + dy = f(x + dx)
we have:
T (¢ e ur i G
dr—=0 dx
that is,

i J(x+dx) = f(x)
dx dx—0 dx




Example: find the gradient of y = 4%

dy _ lirty J{x+dx)— f(x)
ol dx—>0 dx
& _ T d(x+dx1?-4(x)*
olx dx—0 dx
& i A4(x% +2rxdx+(dx)* )4 x°
dx dx—30 dx
B i 452 +Bxdx+4(dx) -4 x*
i dx—0 dx
& _ i Bxdx+d(dx)?
ol dr—30 dx
cancelling by dx
d
2 _8x+ 4dx
dx

in the limit when dx = 0 this becomes,

dy

— =8x
&%

Without doubt this is a very long winded way to work out gradients. There is a simpler
way, by using the Derivation Formula(see further down the page).



Notation This is best described with an example.
Ify= 3x% , which can also be expressed as f(X)= 3%?, then

the derivative of Y with respect to X can be expressed as:

|
Y — 6y gl & £'(x) = 6x

The Derivation Formula

If we have a function of the type Y — k x" , where K is a

constant, then,

dkx™)
dx

=k n x*?

Example:
Find the gradient to the curve Y = 5 X? at the point (2,1).
gradient = (5) @ X*H) =10 X* =10 X

gradient at point (2,1) is10x2 =2



Tangents & Normals

Tangents

The gradient of the tangent to the curve y = f(Xx) at the point (X1, y1) on the curve is
given by:

the value of dy/dx, when x = x; andy =y,

my my= -1

tangent
gradient= m,

Y- ygEm(x - x}

7/ 2 D ]
-1 normal

/ gradient = m,,

Normals
Two lines of gradients m 1, m , respectively are perpendicular to eachother if the product,

mi;xm,=-1



Equation of a tangent

The equation of a tangent is found using the equation for a straight line of gradient m,
passing through the point (X1, Y1)

Y -y1= m(X - X1)

To obtain the equation we substitute in the values for x; and y; and m (dy/dx) and
rearrange to make y the subject.

Example

Find the equation of the tangent to the curve y = 2x? at the point (1,2).

2

pE2x
: dy

therefore gradient, — =4x

dx

v : :

when x =1 - =4 therefore gradient 15 4

x
using yooy =mix—xn) ¥

*from coordinate gecrmetny, gradiert m of the B

betmeentaro pokds (0 ) md (X, 30

n=1 »n=2
y—2=4{zx-1
y-2=4x-4

y=4x-4+2
y=4x-2



Equation of a normal

The equation of a normal is found in the same way as the tangent. The gradient(m , )of
the normal is calculated from;

m ;X m , = -1 (where m ; is the gradient of the tangent)

SO

m,=-1/(m )

Example

Find the equation of the normal to the curve:

y = x% + 4x + 3, at the point (-1,0).

y=x +4x+3
therefore gradienties ), j—“}? =2x+4
x

atthe point (-1,0) mg =2x+d=-2+4=2

let the gradient of the normal be wy

product of tangent and normal gradient:
.y = =1

wy =2

2, =1 m'j=—%

using y—n =eylx-x)
when =y y =0
y=0=-}G-(-)
y=—4s4
mult. by 2 2y =-x-1
dv+x+l=1
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Maxima & Minima

Gradient change

Starting to the left of a maximum the gradient changes from '+ 'to " - 'with
increasing 'x'.

positive

! negative
gradient +

gradient

maximum

Starting to the left of a minimum, the gradient changes from '-'to " + 'with
increasing 'x'.

minimum

= +
negative positive
gradient - + gradient

At the point of maximum or minimum the gradient is zero.
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Example

Show that the curve y = x* has a minimum at (0,0).

==

F
- dy
dient, ——=1x
i dr
at the point (0,07 x=10
dient, £= 2x=10
= i

~. thereis either a masimum or mindmum at (0,07
talang awalue of x less than 0, say -1

gradient, % = 11 =-1(a negative gradient)

taling awalue of x tnore than 0, sy +1

gradient, %= 2x =1 {apositive gmdient)

The gradient changes from negative to positive
with ihcreasing x,
~. the function has a mimmum at (0,03
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Locating the point of maximum or minimum

The x-value at a maximum or minimum is found by differentiating the function and putting
it equal to zero.

The y-value is then found by substituting the 'x' into the original equation.

Example

Find the coordinates of the greatest or least value of the function:

P=x +3r+2

gradient, % =dx+3

max. or min. when gradient is zero
0=2x+73

x=—?‘//=£

subatituting this value of xinto p =x° 4+ 3+ 2

RRCE
(-

=2.25-45+2=-0.25

F

coords. of the mamimumdnnirmrm are-1.5,-0.25%
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Curve Sketching

The power of 'X' gives a hint to the general shape of a curve.

y=ax’+bx*+cx+d

Together with the point of maximum or minimum, where the curve crosses the axes at
y=0 and x=0 gives further points.
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Example

Sketch the curve y = x? +3x +2 from the example above, given that there is a minimum
at (-1.5,-0.25).

factorising and putting y=0 to find where the curve crosses the x-axis,
(X+1)(x+2)=0
x=-1 and x=-2
so the curve crosses the x-axis at (-1,0) and (-2,0)
putting x=0 to find where the curve crosses the y-axis
y=2

so the curve crosses the y-axis at (0,2)

(-1.5,-0.25)
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The Chain Rule Equation
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The Chain Rule

This is a way of differentiating a function of a function.

dv _dy dt
dr  drf dx
Example #1
differentiate (3x + 37
let y=(3x+3) and r=3x+3
then y=r
A, D _3p
dax di
using the Chain Rule
@ _ DA D _apg_gp
dade  df dx dx
d{(3x+3y’} ,
— L =90 +3)" =903)x + D3)Xx +1)
—8i(x+17
Example #2

differentiate (x° +3x)

lety=(x"+5x)" and t=x"+5x

§

then y=t°
£=Ex-—5= £=ﬁf
i dt
using the Chain Rule
D DL D 6Pronis
dr  df dx dx
di(x* +5x)° : :
{( = J}=ﬁ[’x'—51]'|f?_x—.~5}

©2009 A-level Maths Tutor
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Rates of change

The Chain Rule is a means of connecting the rates of change of dependent variables.

Example #1

If air is blown into a spherical balloon at the rate of 10 cm® how quickly will the radius
grow?

if the radius of the balloonis r

then the volume 7 =;l:rr=

and ﬁ =4gr
dar

the mte of change of volume with time

is given by %=1[]cm5 /sec.

using the Chain Rule
ar ¢ ﬂ and £=4}T?‘:
dt dr df or
cdr dV 1 dF dr 1
it == ek APl e A D | P
dt dt AV dt dv 4xr-
dr
0 -
2xr

=l

i.e. rate of change of radius is — cm/sec.
2z
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Example #2

A spherical raindrop is formed by condensation. In an interval of 10 sec. its volume
increases at a constant rate from 0.010mm?® to 0.500mm?*

Find the rate at which the surface area of the raindrop is increasing, when its radius is
1.0mm

radinzr tm

volutme Fis given by V=_gr
LA 3yt =dar?
dr 3

also, area d is given by, A =4xr°
il dg.dr =Bxgr
dr

vol. ihcreases at a constant rate by

0.5-0010=0.490 rrn’® in 10 sec.
V0 049 o s
et 10

we ate required to find % when ¥ =1.0mtn

using the Chain Fule, % = [%]%

_[ﬁﬂjﬁ
& av) a

E= [Em’ 1 JD.D49= [2 xIZI.III4DJ _ 0.098
ct ¥ ¥

ﬁ: _D_DQE = 0098’ 57
ot 1

. surface area, for a radiuz of lmm, increases by 0.098mm s

when ¥ = 1. O,
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Exponentials & Logarithms

Exponential functions

Strictly speaking all functions where the variable is in the index are called exponentials.

The Exponential function e*

This is the one particular exponential function where ‘e’ is approximately 2.71828 and the

gradient of y= e* at (0,1) is 1.

at v = 0 all funclions
have a value of 1

5'm ] 5= 2 TIR"=]
but

only v=e* has a
eradient of 1 at (0,1)

5

y=1.5"

€ 18 an ireational number
2718,

One other special quality of y= e* is that its derivative is also equal to e*

©2009 A-level Maths Tutor
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and for problems of the type y= e

r:l.r{x E:k
ax
o m
JJ’ & dr e &

4]
4y bk
dx dt dx

e

Derivative problems like the above concerning 'e' are commonly solved using the Chain
Rule.

Example #1

Find the derivative of:

_]" — eﬂx:’
let: =2x", y=e
. :.[';_';C2 d_y= !
t At
d_y = d_yﬁ =¢.6x"
dx  dt gt
d}” :egff‘ixj
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Example #2

find the derivative of:

y :€(3.x—4j:

let t=(3x-4)° y=¢
£=l{3x—4}.3 ; d_y:€,
i dlt

.:f_y = d_yﬁ =& 6(3x-4)
dx  dt dx

a _

& - 6(3x — 4)e®
ax

Derivative of a Natural Logarithm function

Remember y=log.x means:

X is the number produced when e is raised to the power of y

The connection between y=e* and y=log.x can be shown by rearranging y=logex.

y=logex can be written as x=eY

(logex is now more commonly written as In(x) )
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The derivative of In(x) is given by:

dlnfx)) _
dx

1
X

Example #1
find the derivative of y = In(3x)
¥ =1n(3x)
=1n(3) +1n(x)

©2009 A-level Maths Tutor  All Rights Reserved
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Example #2
find the derivative of y = In(x3+3)
y =In(x* +3)
let t=x*+3, then y=In()

@5, @ _1
ax dr ot
dy dy dt 1 1
—‘y——‘y———lx: - 2%
de  dt odx ot x°+3
d_y: 2x

dx  x*+3

Problems of the type y=N'®

Problems of this type are solved by taking logs on both sides and/or using the Chain Rule.

Example #1
find the derivative of y=10*
¥y =10"
In(y) =In(10")

In(y) = x1n(10)
d (Infy)) _ A (x1n(10})

= dx
Aoly) & _1 1100)
dy  dx
cf_y =In(10)

1
by
dy

= = yIn(10) =10* 1In(10
o, - yInd ) 10)
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Example #2

find the derivative of y= In(cos®2x)

y =Infcos® 2x)

t =cos(2x) y=In(t’)
ﬁ = -2zin(2x) d—y = 13.332 B -
= dr t :
j_); . j_l;% - i (—2s10(2x))
- —2si(2
—r (—2sm(2x))
= 6 tm(2x)

A graphical comparison of exponential and log functions

As you can see, y= e* is reflected in the line y=x to produce the curve y=In(x)

©2009 A-level Maths Tutor  All Rights Reserved www.a-levelmathstutor.com
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Derivation of Trigonmetrical Functions

Relation between derived trigonometrical functions

sinx COSX
tan x = cotatn X = —
COSX sin X
1
SEC X = COSEC X = —
CoOSX sn o x

Derivative of the Sine Function

/- function V' = sinx

dervabve V = CoS X

d(sinx) _ o

X

e

Example differentiate sin(2x+4)

let yw=sn(2x+4) and f(=Zx+4

¥ =sinif)
. coslf) ans 2
i dx
24 =d_yﬁ = cos().d
dx  df dx

=Z2oos(2x+4)
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Derivative of the Cosine Function

derivative

dicosx) _
efx

—sin X

Example differentiate cos®x

let y=cos®x and f=rcosx

y=r
ey i
—y=3£2 —=-anx
i dx
.:I’_y =d_yﬁ = 352.(—sinx}
dr  df dx

= —3cos® xsin x
3 :
B —Ecos x(2rcosxsin x)

but #sin28=Zcosfand

dy

3 .
i - cosxsnlx
e




26

Derivative of the Tangent Function

% sin X

ditanx) _ [E]
dx dx

using the Product Eule

] :
¥=— H=50X V=CoiX
v
efis v .
— =cosx — =-aunzx
dx dx
i v

V— —i—
ff_}’ _ dx afx
ax v

_ (cosx).(cos x) — (sin x).(—sin x)
2

costx
2 .2
_costxtanx 1
cosx cosix
o (tan %
ditanz) _ 2
dx
Derivative of the Cosecant Function
1
d|l — . -1
dicosecx)  lsinx _.::Eusmx.
dx fx dx
. -1 .
let y=isnxi o, f=snx
then y=¢"
@ = df
A N CE & - cosx
it dx
dv oy df _ . .
AT ~(sinx) " cosx
dx  di dx
dy = cosx cosx _ cosx 1
ax sin” x 5N Xosin X sinx sinx
dlcosecx)

—cotan X ocosec x

dx
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Derivative of the Secant Function

o . 1

.::E(sen:xj= Cos X =ci|cosx|_

dx % %
let y=|cosx|_1, t=cosx
then y=¢"
dy 2 efi :
— ={-1it — =-s5nx
= (—1{) ot
.:;t’_y = d_yﬁ = —.ﬁ'g.(—sin %) =(cos x)'j.sin x
dx ot dx
dy  sinx sinx_ sinx 1

ko : ;
% Cos X COSACoS5A  COEXN CoSA

dizecx)
dx

=tan xsec X

Derivative of the Cotangent Function

dEH
dicotz) _ |sinzx

% adx
uzing the Product Eule

i :
¥=—  mTCosX vEanx
v
i ; dv
— =-snx =S ROEE
dx dx
di  dv
o
a¥-_ . dr  #HE
dx v
_(snx)(-sanx)—(cosx).(cosx)
— -
sin® x
_—sinfx-cos®x _ —1(in® x+cost x)
sin® x sin® x
1 2
e W
sin® x
dicot x
glgot 7). —cogec x

dx
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The Product Rule

The Product Rule Equation

Gottfried Leibniz is credited with the discovery of this rule which he called Leibniz's
Law.

Simply, if u and v are two differentiable functions of x, then the differential of uv is given
by:

V=iV

this can also be written, using 'prime notation' as :

(uvy) =uv'+vul’
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Example #1
differentiate  (x* +1°(x° + *
u=(x+1)° v=(x +1}*
y=uw
e A+ 17 2x 8. 20x% +1).3x°
% dx
d_y =uﬁ+vdi
dx adx %
i
.:f_y =P+ DR 2AE D3+ (D3 + DR 2k
X
=6 (A TP (F + D +Ealx + D (T + 1
= 6x(x + 1P (2 + D + D+ (2 + 1)
=6x(F + DM + D{x¥ +x+ 27 +1]
=6x(x + 1% + (2K +x+ 1)
Example #2

differentiate v = (xz - 4ix+ 3:'2

u=(x -4 v=(x+3"
y=uy
dj = 2% ﬁ =2(x+3)
adx ax
; by v du
using A VY T
dx dx adx

L (x —4L2(x+ D+ (x+3%2x
dx
=2(x+30(x* -+ 2x(x + 3
= 2(x+3){ x" —4+x" + 3x|

= 2(x+3(2x° +3x-4)
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Example #3

differentiate y =(x* + 22+ x)
= (x+3) p=(2+x0)4
y=uy
H_ ox Lo ¥
dx dx 2
v v vcfu

using — =py—+t

% dx E

O S N
dx 2

(*+3) | 22+
22 + 1) 1

R R A ek
St )
_(x+ 3 +4x2+x)
22+ x)7%

_(x*+3) +8x+4x"

22+ 17
5x° +8x+3

22+ 1)

dy _(Ox+3)x+1)
dx 22+
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The Quotient Rule

The Quotient Rule Equation

This is a variation on the Product Rule(Leibniz's Law) from the previous topic.

As with the Product Rule, , if u and v are two differentiable functions of x, then the
differential of u/v is given by:

this can also be written, using 'prime notation' as :

Uy _vu' —uy’
v Ve



Example #1

32

(&3
(x+2)°
u=(x-3°" v={x+2)*

differenti ate

3
FE—
¥
i v
—=2(x-3 —=2(x+2
> (x—3) r (x +2)

x x
el v
v -
4y _ dx  dx
e v

dy (x+272(x-3-(x-3* 2x+2)
dr (x+2)"
xR 2x=3 = (x -3 2x+2)
) (x+2)*
_2x+ Yz - (x+2) = (x-3)
) (x+2)°
_ 20x =3 x+2—x+3::
) (x+2)
_ 2(x=3)(5)
2
dy  10{x -3
dr  (x+2)




Example #2
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differenti ate c ®
Y1+
M=x v={l+ XQ:I%
i
A
Aoy Sl
dx dx 2
= x(1+x%) 4
S
d_y _ dx dx
dx v
AT ok
(1+x)
Rkt ok
(1+ x*)
2, %4
mult. top & bottom by (1+x7)
_ x5
1+ 5%
dy _ 1

dx (1+ xﬁ)%
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Example #3
.
differenti ate : .7;'2
1+x
u=1-x p=1+zx"
]
.}?=_
v
a0 =-2x ﬁ=2:Jr
o ax
vcfu _u.::fv
_ dx  dx
e e
_ {1+ x)(-2x)-(1-x").2x
i

_—(2x+2x7) - (2x - 227
) (1+x°)
—2x-22 - 2x+2x°
(1+ 2y
dy _ 4x
dr 1+ 207
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Parametric Equations

Parametric Equations

Both x and y are given as functions of another variable - called a parameter (eg 't"). Thus
a pair of equations, called parametric equations, completely describe a single x-y
function.

The d ifferentiation of functions given in parametric form is carried out using the Chain
Rule.

Example #1

find Iﬂ?—“:u'».ﬁrhnan x=i v=2

dx
x =i y=2
8% o Do
ot cft

dy _dy .:1!’5:21
dr df dx 2
dy 1

dx i



Example #2
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given that x =3cos 8 —cos38 L p =3sind- sin3d

dy
howthat =— =tan 24
show

xr=3cosd —cos38 F=3anf-z1n348

E =350+ 35in38 £= Jcosf-Gcos 38
a6 d&

D _D K _30050- 300530
de  d8 dd —Jsin &+ 3sin 34

dp  3cosf-3cos38  cozd-cozldd
dr  3Fen3P-Gsind  @n3d-snd

but cog A+ 5 —codA- B =-danAdan kb
cog 28 + Fi—cos(28- i =—-2an1fan &
cos3th— cog = -Jsin184n &

cosl & —cos(38) = desin28an 8

-4

also sin(A+ By—sin(A-51=ZcosAsinE
st 28+ S—an 28— = Qeozddain g
= an(3N —an i =2cosdzin g

cdp _ 2sindfend

U dx 2cos2fsEnd
—tan 18
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Example #3

if x=¢ - and v=£'-t,

)
find &7 i terms of #

X
x=£-2 E=3.f:*—2.c
i
dy
==t . ==2-1
& i
dy _dy di
dx dt dx
1
=2f-1
-2

_ 2=l
£(3t - 2)
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Implicit Equations

Explicit equations

Explicit equations are the type we are most familiar with eg y=f(x), y = 2x*> + 3x - 5 etc.
where vy is expressed in terms of x or some other variable.

Implicit equations

Implicit equations have the structure of being a mix of x and y terms eg 2x*+ 3xy - 3y* =
5, so y cannot be expressed in terms of x.

The method for solving equations of this type is to regard the whole expression as a
function of x and to differentiate both sides of the equation. Any power of y is treated as a
‘function of a function’, as y is a function of x.

Example #1

find j_}’ for the implicit funct on:
b

23yt -yt 22 =0

diz) A3y 40" _dex) _ 0
dx dx dx dx

dy dy
3xt 412y — 0 oo
% o odx y.:fx

‘f—""(lzf —-2y)=2-3x"
ax

dy _ 2-3%
dx 12y -2y




Example #2
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find .:i_y for the implicit funch on:

dx
In{y) = yln(x)
for x>0 and » >0

In{y) = yln(z)

dilniy)) _ diyla(x)) .

dx dx
gyl
for the expression M
dx
let =y ad v=In{x)

du _ du .:fy .:fy dv 1

.:;{y dx du dx dr x
ey v .:;l!’u

_—u_
dx r::fx .::t’x
ci(yln(x]) +1 ( :I
a&x
4yl
subshtuting inte  {§ for w
X

Lay =y.l +1n(x)d—y
¥ dx x adx
reatt anging
14
2 la(x )
¥ dx x
multiplyving each side bj? ¥

d—y—ylnlix:ld = y_
dx x
3

dy _
Eﬂ »ln(x)) m

dy___y
dr x(1- yln(z)
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Example #3

find the gradient of the curve:
P+ 2xp-2y +x=2 atthe point (-4, 1)

d(x*) Ld2nn d(2y’) L Ex)
dx dx ax ax

i
2x+(2 v+ Ex.d—yj—4y.d—y+l =0
dx dx

d—y(Ex—dly} s iy
dx

IR e b

E_ ax—4y

when x=-4 and y =1

e e e e N B 6 b R e S

dr  2(-4)-4()  -8-4
5] 5

1z 1z

gradient at (4,1} 13 —%
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Differential Equations

Definition

An equation containing any differential coefficients is called a differential equation.

2 3
diff erential coefficients: d—‘y . d—“:: d_f
dx  dxt dx

El

The solution of a differential equation is an equation relating x and y and containing no
differential coefficients.

General & Particular Solution

The General Solution includes some unknown constant in the solution of a differential
equation.

When some data is given, say the coordinates of a point, then a Particular Solution can
be formed.

example

differential equation: % =

general solution: F=dx+¢

(whete ¢ i5an unloiown constant)

ifwearegiventhat x=3when =5
theh 5=124¢, s0 c=-7
particular solution;.  p=4r-7
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Example #1
3
find —5 wheny = p
y=2=3y1
x
Cf_}f _a 3
S D] it
% -1 e
. i = 6
. E = _3(_2)?{ = ?
A’y L 18
BT ~ e
A )
Example #2

given that y=}1xj+B]nx+C

ap 1
showr that. —‘]; = —.ﬁ
i T oo

y=}1xg+B]nx+C'

B
ﬁ=Lf1:c+—
dr

Ry

2
¥ B
_2=2,q__2
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Points of Inflection(Inflexion)

The value of the second derivative can give an indication whether at a point a function has
a maximum, minimum or an inflection.These are all called stationary points.

d? .
f <0 = maxmmum(-ve)
2
jx_{ >0 = mimnmm(+ve)
d? 3 .
dx_f =0 = mflection(zero)

A point of inflection has a zero gradient, but the point is not a maximum or a minimum
value.

It is where the gradient of a curve decreases(or increases)to zero before increasing(or
decreasing)again, but not changing from a negative to a positive value or vice versa.
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Example

Find the stationary points of the function:

ssBx sl Patand

y=3x' -4 -12x* +5

& =12x" —12x% - 24x
ax
=12x(x* - x-2)
=12x(x+D(x-2)
", Zhasroots 0-1,2

=

2
47 365 —24z-24 =12(3x* - 2x -2

dx
]

when x =0 "f—f=—24<0 L maz (0,10)
dx
.:i’gy

when x=-1 —5=36>0 min.(-15
adx

]
when x =2 ‘;_f=?2>0 Cmin (2,22)
X
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Notes

This book is under copyright to A-level Maths Tutor. However, it may be
distributed freely provided it is not sold for profit.



